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1. Summary

In order to make computing on encrypted data be both practical to use and secure
from attack, it is necessary to discover, develop, and understand the mathematics on
which it is based. Discovering and developing the mathematical foundations of fully
homomorphic and somewhat homomorphic encryption schemes allows computing on
encrypted data to be performed with confidence, knowing that its cryptographic
security is based on sound mathematical foundations.

Hendrik Lenstra and Alice Silverberg discovered and developed some of the mathe-
matical foundations of some homomorphic encryption schemes, and propose a variant
that has some advantages over earlier systems in terms of efficiency. In this variant,
the secret key of the encryption scheme is a lattice basis that is nearly orthogonal
with respect to a certain measure. This makes decryption very efficient. The crypto-
graphic security of the scheme comes from ensuring sufficient entropy when choosing
the basis.

A primary method of attack on homomorphic encryption schemes consists of lattice
algorithms performed on ideal lattices. The work performed here uses lattices that
have some symmetry. Recommendations are that the mathematical foundations of
lattices with symmetry be discovered and developed, in order to help quantify the
security of homomorphic encryption schemes.

This material is based on research sponsored by DARPA under agreement number
FA8750-11-1-0248. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the author and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.
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2. Introduction

Fully Homomorphic Encryption (FHE) has been referred to as a “holy grail” of
cryptography. Craig Gentry’s recent solution to the problem, while not efficient
enough to be practical, was considered to be a major breakthrough. Since then,
much progress has been made in the direction of finding efficient Fully Homomorphic
Encryption schemes.

In encryption schemes, Bob encrypts a plaintext message to obtain a ciphertext.
Alice decrypts the ciphertext to recover the plaintext. In Fully Homomorphic En-
cryption, parties that do not know the plaintext data can perform computations on
it by performing computations on the corresponding ciphertexts.

A major application of FHE is to cloud computing. Alice can store her data in
“the cloud”, e.g., on remote servers that she accesses via the Internet. The cloud has
more storage capabilities and computing power than does Alice, so when Alice needs
computations to be done on her data, she would like those computations to be done by
the cloud. However, Alice does not trust the cloud. Her data might be sensitive (for
example, Alice might be a hospital and the data might be patients’ medical records),
and Alice would like the cloud to know as little as possible about her data, and about
the results of the computations. So Alice sends encrypted data to the cloud, which
can perform arithmetic operations on it without learning anything about the original
raw data, by performing operations on the encrypted data.

Fully Homomorphic Encryption can be used to query a search engine, without
revealing what is being searched for (here, the search engine is doing the computations
on encryptions of information that it doesn’t know).

More precisely, FHE has the following property. Say that ciphertexts ci decrypt to
plaintexts mi, i.e., Decrypt(ci) = mi, where the mi’s and ci’s are elements of some
ring (with two operations, addition and multiplication). In FHE one has

Decrypt(c1 + c2) = m1 +m2, Decrypt(c1 · c2) = m1 ·m2.

In other words, decryption is doubly homomorphic, i.e., homomorphic with respect
to the two operations addition and multiplication.

Being fully homomorphic means that whenever f is a function composed of (finitely
many) additions and multiplications in the ring, then

Decrypt(f(c1, . . . , ct)) = f(m1, . . . ,mt).

If the cloud (or an adversary) can efficiently compute f(c1, . . . , ct) from ciphertexts
c1, . . . , ct, without learning any information about the corresponding plaintexts m1,
. . . ,mt, then the system is efficient and secure.

Another requirement for FHE is that the ciphertext sizes remain bounded, inde-
pendent of the function f ; this is known as the “compact ciphertexts” requirement.

Fully Homomorphic Encryption schemes can be either public key (where the en-
cryptor knows the decryptor’s public key but not her private key) or symmetric key
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(where the encryptor and decryptor share a key that is used for both encryption and
decryption).

H. W. Lenstra and A. Silverberg propose a variant of some somewhat homomorphic
encryption schemes that were proposed earlier by others. In this variant, the secret
key is a lattice basis that is nearly orthogonal with respect to Gauss’s general measure.
This makes decryption very efficient. Cryptographic security comes from ensuring
sufficient entropy when choosing the basis.

To fix ideas, we use the somewhat homomorphic encryption schemes of Smart-
Vercauteren and Gentry-Halevi as our jumping off point. However, the ideas proposed
here, and the discussion concerning their security and efficiency, should be useful in
studying or implementing other cryptographic schemes.

Decryption in lattice-based encryption schemes relies on the secret lattice basis
being better (i.e., more orthogonal) than a basis obtained via the Lenstra-Lenstra-
Lovász (LLL) lattice basis reduction algorithm. The lattice bases proposed here are
sufficiently orthogonal to give encryption schemes that are more efficient than with
previously proposed bases, while maintaining cryptographic security.

In Section 3 we give the necessary background. The results and discussion are
in Section 4, and constitute work performed jointly by Hendrik Lenstra and Alice
Silverberg. Section 4.1 includes results and discussion concerning decryption. In Sec-
tion 4.2 we discuss the security of a variant that has been proposed by Vercauteren
and Gentry. In Section 4.3 we give some relevant algebraic number theory results,
and give a natural inner product with respect to which the bases we construct will be
nearly orthogonal. In Section 4.4 we present a first step in the direction of producing
suitable nearly orthogonal bases, and in Section 4.5 we discuss the security of associ-
ated encryption schemes. In Section 4.6 we give the full variant proposed by Lenstra
and Silverberg. In Section 4.7 we give results that justify why decryption works. A
discussion of the cryptographic security is in Section 4.8.

The results are joint work with Hendrik Lenstra. Thanks go to Zvika Brakerski,
Craig Gentry, Lily Khadjavi, Hendrik Lenstra, Chris Peikert, and Nigel Smart for
helpful discussions and comments.
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3. Methods, Assumptions, and Procedures

In this section we give the assumptions and background. In Section 3.1 we give
some of the terminology, history, and other background. In Section 3.2 we recall a
simple illustrative example. In Section 3.3 we recall an encryption scheme for which
we will obtain some results in Section 4.

As usual, Z, Q, R, and C denote the integers, rational numbers, real numbers, and
complex numbers, respectively, and Fq denotes the finite field with q elements.

3.1. Some history and background.

3.1.1. Early history. In 1978, shortly after the invention of the RSA Cryptosystem,
Rivest, Adleman, and Dertouzos [35] came up with the idea of fully homomorphic
encryption, which they called “privacy homomorphisms”. Their paper states, “al-
though there are some truly inherent limitations on what can be accomplished, we
shall see that it appears likely that there exist encryption functions which permit
encrypted data to be operated on without preliminary decryption of the operands,
for many sets of interesting operations. These special encryption functions we call
‘privacy homomorphisms’; they form an interesting subset of arbitrary encryption
schemes”. Despite the optimism of Rivest, Adleman, and Dertouzos, fully homomor-
phic encryption remained out of reach for many years.

A number of cryptosystems are homomorphic with respect to one operation. For
example, RSA and ElGamal encryption are homomorphic with respect to multiplica-
tion.

We recall that in (basic) RSA, Alice’s public key is (N, e) and private key is d,
where N is a product of two large primes and where de ≡ 1 mod ϕ(N). If m ∈ Z/NZ
is the plaintext, then the ciphertext is c = me mod N . To decrypt, Alice computes
cd mod N = m. If Bob encrypts messages m1 and m2 using Alice’s public key (N, e),
then the product of the resulting ciphertexts is the ciphertext of the product of the
plaintexts m1 and m2, i.e., (me

1 mod N)(me
2 mod N) = (m1m2)

e mod N . Thus,
Decrypt(c1 · c2) = Decrypt(c1) · Decrypt(c2), where ci = me

i mod N is the ciphertext
corresponding to the plaintext mi.

For ElGamal, suppose the private key is x ∈ {1, . . . , n − 1} and the public key is
h = gx ∈ G, where G is a cyclic group of order n generated by g. If m1,m2 ∈ G are
plaintext messages, then the corresponding ciphertexts are of the form ci = (ai, bi) =
(gri ,mih

ri) ∈ G × G for i = 1 and 2, where the ri are chosen by the encryptor(s) at
random in {1, . . . , n− 1}. Then

Decrypt(c1 · c2) = Decrypt(a1a2, b1b2) = ((a1a2)
x)−1b1b2

= (ax1)−1b1 · (ax2)−1b2 = Decrypt(c1) ·Decrypt(c2).

There have been other encryption schemes with homomorphic properties. For
example, the Goldwasser-Micali cryptosystem [21] and its generalization the Paillier
cryptosystem [31] are homomorphic with respect to addition of plaintexts in the sense
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that

Decrypt(c1 · c2) = m1 +m2,

but are not homomorphic with respect to multiplication of plaintexts.
In [1], Boneh, Goh, and Nissim gave a partially homomorphic encryption scheme

that can do one multiplication and any number of additions.

3.1.2. Gentry’s FHE scheme and beyond. Craig Gentry solved the problem of how to
do Fully Homomorphic Encryption in his Stanford PhD thesis [12, 13, 14]. For the
first time, there was now a scheme that could (inefficiently) do an arbitrary number
of additions and multiplications.

Gentry’s solution used ideal lattices, i.e., ideals in algebraic number fields. Given
that one requires a homomorphic property with respect to two operations, it is natural
that rings come into play. In [12] and [13], the rings Gentry used were of the form

R = Z[x]/〈xN + 1〉 and Rd = (Z/dZ)[x]/〈xN + 1〉

where N = 2n (see Section 3.3 below). It was later realized that one can use the rings
Z and Z/dZ to construct schemes parallel to those that use the rings R and Rd (see
Section 3.2 below).

There have been a number of improvements, implementations, and new schemes.
See for example [36, 11, 15, 37, 16, 25, 17, 6, 5, 9, 28, 4, 18, 19, 10, 3]. The NTRU
encryption scheme [23], which was developed in the late 1990’s, turned out to be
“somewhat homomorphic”, and has been turned into an FHE scheme [29].

3.1.3. Security. The primary known attacks on FHE schemes are variants of the LLL
lattice basis reduction algorithm [27]. The security of almost all currently known
schemes is based on the presumed difficulty of some lattice problem, such as finding
an approximately shortest (non-zero) vector in a high dimensional lattice.

A number of FHE schemes use ideal lattices rather than arbitrary lattices. These
are very special lattices, and it might turn out to be the case that lattice attacks are
easier for ideal lattices than for generic lattices. This is an open question. At the
moment, special attacks that work better for ideal lattices than for general lattices
are not yet known.

3.1.4. Somewhat Homomorphic Encryption (SHE). Somewhat Homomorphic Encryp-
tion (SHE) schemes are encryption schemes that have some homomorphic properties
but are not fully homomorphic. With Somewhat Homomorphic Encryption one can
generally do a limited number of additions and multiplications, but each time one
does an operation, it contributes “noise” to the ciphertext (see Section 3.2 for an
example). Eventually the noise is so great that it is not possible to decrypt. Also, in
SHE schemes the ciphertexts could get larger (message expansion), i.e., the compact
ciphertexts requirement might be violated. In Gentry’s initial work he started with
an SHE scheme and then “bootstrapped” it to obtain an FHE scheme.
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3.1.5. Bootstrapping. Gentry’s original FHE papers and thesis introduced the idea of
bootstrapping. One “bootstraps” to go from a (bootstrapable) somewhat homomor-
phic encryption scheme to a fully homomorphic encryption scheme.

To make an SHE scheme fully homomorphic, one can include as part of the public
key an encryption of the private key. When a ciphertext gets too large or too noisy,
the encryptor can then use the somewhat homomorphic encryption scheme to evaluate
the decryption function applied to the ciphertext, using the encrypted private key.
This re-encryption process produces a new encryption of the original plaintext, that
is more compact and less noisy. For this to work, it is necessary for the somewhat
homomorphic scheme to be “circular secure” (i.e., it must be able to securely encrypt
its own private key) and capable of (homomorphically) evaluating the function f =
Decrypt and “a little more”. Here, we view the argument of the Decrypt function as
being the secret key, rather than the ciphertext, and we view the ciphertext as fixed.

Gentry also uses what he calls “squashing” of the decryption circuit in order to
simplify decryption enough so that it is among the functions that the somewhat
homomorphic scheme can homomorphically evaluate correctly. Squashing converts
an SHE scheme into a bootstrappable SHE scheme. In [6], Brakerski and Vaikun-
tanathan use “dimension-modulus reduction” to simplify the decryption circuit and
avoid squashing. Another way to remove squashing is given in [17].

In [4], Brakerski, Gentry, and Vaikuntanathan use “modulus switching” to reduce
noise and lessen the need for bootstrapping. Modulus switching replaces a ciphertext
mod p1 with a ciphertext modulo a smaller modulus p2 that decrypts to the same
plaintext.

See [14] for a nice analogy (“Alice’s jewelry store”, with jewelry fabricated in nested
secure gloveboxes) that gives the idea of FHE and bootstrapping. See also [22] for a
good explanation of FHE for a general audience. See Vaikuntanathan’s survey article
[38] for a good description of modulus switching and other concepts from FHE.

3.1.6. Malleability. We remark that FHE schemes are always “malleable”. In cryp-
tography, malleability means that a ciphertext can be perturbed to create a new
ciphertext that decrypts to a perturbation (in a known way) of the original plaintext.
In a non-malleable encryption scheme, perturbing a ciphertext a little will generally
produce an invalid ciphertext, i.e., one that does not decrypt to a valid plaintext.
Malleability is often an undesirable property in cryptography. For example, if an
auction uses encrypted bids, and (an adversary) Mallory sees the encryption of Bob’s
bid, one wants it to be the case that Mallory cannot construct a new ciphertext that
decrypts to a bid that is one more than Bob’s bid, i.e., one wants non-malleable
encrypted bids.

There has been some work on obtaining partial or “targeted” non-malleability along
with some limited homomorphic ability; see for example [33, 2]. There are interesting
open questions in this area.
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3.2. Somewhat Homomorphic Encryption over the Integers. We begin with
a warm-up example from the introduction to [11]. This example of a somewhat
homomorphic encryption scheme comes in two flavors, symmetric key and public key.
To keep it short, we will be very imprecise about parameter choices and other details.
For more information see [11].

We first give the symmetric key version. The shared key is an odd positive integer
k. The message is a bit m ∈ {0, 1}. The encryptor chooses random integers q and r
in a certain range, and so that |2r| < k/2, and computes the ciphertext

c = m+ kq + 2r.

To decrypt, the decryptor computes (c mod k) mod 2 = m where a mod w means
that one takes the representative of a mod w in the range (−w/2, w/2].

If ci = mi + kqi + 2ri for i = 1, 2, then

c1 + c2 = (m1 +m2) + k(q1 + q2) + 2(r1 + r2),

c1 · c2 = m1 ·m2 + k(m1q2 +m2q1 + kq1q2 + 2q1r2 + 2r1q2) + 2(m1r2 + r1m2 + 4r1r2).

Thus the noise grows, and after one does too many multiplications or additions,
the decryption function no longer outputs the correct plaintext. The ciphertexts
also blow up in size. This Somewhat Homomorphic Encryption scheme is not fully
homomorphic, but in [11] van Dijk et al. use Gentry’s bootstrapping techniques to
turn it into a Fully Homomorphic Encryption scheme.

A public key version, as in §3.1 of [11], is as follows. The secret key is again an
odd positive integer k. The public key now consists of the integers xi = kqi + 2ri
for i = 0, 1, . . . , t, where the qi and ri are as before, so each xi can be viewed as
an encryption of 0 under the symmetric key scheme. The xi are taken so that x0 is
the largest, x0 is odd, and x0 mod k is even, where again x mod k is in the interval
(−k/2, k/2].

To encrypt a message bit m ∈ {0, 1}, the encryptor chooses a random subset S of
{1, . . . , t} and a random integer r in a certain range. The ciphertext is

c = m+ 2
∑
i∈S

xi + 2r mod x0.

The decryptor computes (c mod k) mod 2 = m.
The security is based on the difficulty of the Approximate Common Divisor Prob-

lem, which is the problem of finding k, given a collection of integers of the form
{kqi + ri}ti=0 with ri “small”. Approximate Common Divisor Problems were intro-
duced in [24] and have been studied in [7, 8].

3.3. The Gentry, Smart-Vercauteren, and Gentry-Halevi SHE schemes. We
next give a version of the Somewhat Homomorphic Encryption schemes that were in-
troduced by Gentry in [12, 13] and improved on by Smart and Vercauteren in [36]
and by Gentry and Halevi in [16] (see also [28]). In these schemes, the public key
corresponds to a “bad” (skewed) basis for a lattice, while the private key is a “good”
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(more orthogonal) basis for the same lattice. The (N -dimensional) lattices are ideals
in the ring of integers of the cyclotomic field of 2N -th roots of unity. The plaintext
is encoded as a (suitable) point in the ambient space RN . Encryption translates
that point into the fundamental parallelepiped associated to the bad (public) basis.
Decryption translates the ciphertext point into the fundamental parallelepiped asso-
ciated to the good (private) basis. The security relies partly on the fact that it is
difficult to find a good, nearly orthogonal basis for a given lattice.

We next give some of the details of a version of the scheme. Let

F (x) = xN + 1 ∈ Z[x]

with N = 2n. Let θ be a root of F (x); then θ is a primitive 2N -th root of unity. Let

K = Q[x]/〈F (x)〉 ∼= Q(θ),

a CM-field of degree N over Q. (A CM-field is a totally imaginary quadratic exten-
sion of a totally real number field. Examples include imaginary quadratic fields and
cyclotomic fields. The K defined here is a cyclotomic field.) Let

v(x) =
N−1∑
i=0

vix
i ∈ Z[x]

be a degree N − 1 polynomial whose coefficients vi are random t-bit integers for a
suitably chosen t, and consider the N ×N integral matrix

V =


v0 v1 · · · vN−1
−vN−1 v0 · · · vN−2

· · ·
−v1 −v2 · · · v0

 . (1)

The rows of V are the coefficients of xiv(x) mod F (x) for i = 0, . . . , N − 1. Let
L denote the lattice in ZN generated by the rows of V , let γ = v(θ) ∈ K, let
NormK/Q : K→ Q denote the norm map, and let

d = NormK/Q(v(θ)) = resultant(F, v) = det(V) = det(L). (2)

Replace the random polynomial v(x) if necessary, until you have found one for which
d is odd and square-free. (In [36], they start with v(x) ≡ 1 mod 2Z[x] to ensure that
d is odd, and they replace v(x), if necessary, until they find one for which d is prime.
In [16] it is shown that it is not necessary for d to be prime; it suffices to have d odd
and square-free.)

Whenever A is a matrix whose rows {a1, . . . , aN} form a Z-basis for a lattice L ⊂
RN , define

P (A) =
{ N∑
i=1

αiai : αi ∈ [−0.5, 0.5)
}
,

a (half-open) parallelepiped. This is the “fundamental parallelepiped” associated to
A. Every element of RN/L has a unique representative in P (A).
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All reductions mod d will be taken in the range [−d/2, d/2). Let r ∈ [−d/2, d/2)
denote the unique common root of F (x) and v(x) mod d. Let ri = ri (mod d) and
consider the N ×N integral matrix

B =


d 0 0 · · · 0
−r1 1 0 · · · 0

· · ·
−rN−1 0 0 · · · 1

 . (3)

Since d is odd and square-free, it follows that B is the Hermite Normal Form of the
matrix V .

The public key now consists of d and r (or equivalently the matrix B), and the
secret key is v(x) (or the matrix V ). To encrypt a bit m ∈ {0, 1}, choose a random

noise polynomial u(x) =
∑N−1

i=0 uix
i with each coefficient ui ∈ {0,±1} taking values

1 and −1 with equal probability. Let a(x) = m+ 2u(x) and let

a = (2u0 +m, 2u1, . . . , 2uN−1)

be the vector of coefficients of a(x). Let d·c denote rounding to the nearest integer.
Let the ciphertext be

c = a− (daB−1cB) = (m+ 2u(r) mod d, 0, . . . , 0),

which is the translation of a to the parallelepiped P (B) (where translation means
that one subtracts lattice vectors until one lands in the fundamental parallelepiped).

To decrypt a ciphertext c, let

a1 = c− (dcV −1cV ) = (a0, . . . , aN−1),

which is the translation of c to the parallelepiped P (V ), and compute m = a0
(mod 2). As shown on p. 145 of [16], decryption works (i.e., a1 = a) as long as
the absolute value of every entry in aV −1 is less than 1

2
.

The rows of the matrix B are a “bad”, i.e., skewed basis for the lattice L, while
the rows of V are a “good” (secret) basis for L. If the rows of V are sufficiently
orthogonal, and if the plaintext point a is chosen in a suitable way, then decryption
yields the original plaintext point.

The scheme is homomorphic because its multiplication and addition are just mul-
tiplication and addition in the ring of integers of the field K.

The security of the above scheme is based on the simultaneous difficulty of the
following problems.

The Small Principal Ideal Problem (SPIP) is the problem, given a principal
ideal in either Hermite Normal Form (i.e., the matrix B) or two element representation
(i.e., 〈d, θ − r〉), of finding a “small” generator (e.g., v(θ)) for it. If the SPIP is
sufficiently hard, that would thwart a key recovery attack, wherein an adversary who
knows the public key (B or (d, r)) tries to find the secret key (v(x)).

Security against an attack where the adversary tries to find the plaintext, given a
ciphertext, is closely related to the difficulty of the Closest Vector Problem for

9
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ideal lattices. This is the problem of finding a closest lattice point to a given point
in the ambient space.

Another type of security is “semantic security”. The requirement for semantic
security is that an adversary, who is presented with a ciphertext that is either an
encryption of 0 or an encryption of 1, cannot distinguish which it is with probability
greater than 1

2
+ ε of getting the correct answer. The semantic security of the scheme

is related to a new problem, that Smart and Vercauteren call the Polynomial Coset
Problem. The Polynomial Coset Problem is the problem of distinguishing between
a random element of Z/dZ and an element of the form f(r) mod d, where f(x) ∈ Z[x]
is random (and unknown) with small coefficients and r is the common root of F (x)
and v(x) mod d. The paper [36] states that the Polynomial Coset Problem is akin to
Gentry’s Ideal Coset Problem from [12]. These problems can be viewed as versions
of the Bounded Distance Decoding problem from coding theory.

Gentry, Smart-Vercauteren and Gentry-Halevi “bootstrap” their somewhat ho-
momorphic encryption schemes into fully homomorphic encryption schemes using
a re-encryption algorithm. Making this cryptographically secure requires an addi-
tional security assumption, namely the difficulty of a decisional version of the Sparse
Subset-Sum Problem, i.e., it should be difficult to distinguish between random
subsets of Z/dZ and those that have sparse subsets that sum to 0. Here, bootstrap-
ping augments the public key with a “hint” about the secret key, namely, with a large
set of vectors that has a very sparse subset that sums to the secret key.

10
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4. Results and Discussion

We first give some observations concerning the Smart-Vercauteren (SV) and Gentry-
Halevi (GV) schemes that were reviewed in Section 3.3 above. Our main result is a
proposed variant of these schemes (see Section 4.6). We justify introducing this vari-
ant, and discuss some pros and cons in comparison to earlier schemes. This section
represents joint work of Hendrik Lenstra and Alice Silverberg.

4.1. Some comments on the SV and GH schemes. We retain the notation of
Section 3.3. The secret basis for the lattice L in the Smart-Vercauteren and Gentry-
Halevi schemes consists of the rows of V , where the first row is chosen “at random”.
The more random, the higher the security, but the less likely that one can actually
decrypt.

Our goal is to replace this secret basis with a nearly orthogonal set of vectors (and
replace the lattice L with the lattice generated by these vectors). If the secret basis
is nearly orthogonal, then decryption is feasible and amounts to finding a shortest
vector in the coset c +L, and security is maintained as long as there is still sufficient
randomness.

With the Smart-Vercauteren and Gentry-Halevi schemes, decryption fails if the
vector a does not lie in the parallelepiped P (V ). In this section we discuss some
aspects of decryption, which motivated us to find a refinement of the SV and GH
schemes in which decryption is more likely to succeed.

If g(x) =
∑t

i=0 gix
i ∈ R[x], let

||g(x)||2 =
√∑t

i=0 g
2
i and ||g(x)||∞ = maxi=0,...,t |gi|.

In [36, p. 427] it is shown that if the resultant d of (2) is roughly of size ||v(x)||N2 ·
||F (x)||m2 , where deg(v) = m = N − 1, then a quantity they call the decryption
radius is sufficiently large to allow decryption. In Lemma 1 below we prove that the
resultant d is at most ||v(x)||N2 , and therefore is not of size about ||v(x)||N2 · ||F (x)||m2 .
In Lemma 2 we refine the bound in Lemma 1 of [36], in order to enable the decryption
radius to be potentially sufficiently large to allow decryption.

(Note that the notation v, r, θ, d, and a(x), which came from [16], is denoted
G,α, ζ, p, and C(x), respectively, in [36].)

Lemma 1. d ≤ ||v(x)||N2 .

Proof. With θ a primitive 2N -th root of unity as above, and taking the products and
sum over all the roots ζ of F (x), we have

d = NormK/Q(v(θ)) =
∏

F(ζ)=0

v(ζ) =
∏

F(ζ)=0

(v(ζ)v(ζ̄))1/2

=
∏

F (ζ)=0

((v(ζ)v(ζ))1/N)N/2 ≤
∑
F (ζ)=0

(
v(ζ)v(ζ̄)

N

)N/2
(4)
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where the inequality follows from the arithmetic-geometric mean inequality.
Since ∑

F (ζ)=0

ζk = TrK/Q(θk) =

{
N if k = 0,

0 if 0 < |k| < N ,

we have∑
F (ζ)=0

v(ζ)v(ζ) = (
N−1∑
i=0

viθ
i)(
∑
i

viθ
i
) =

∑
0≤i,j<N

vivjθ
i−j = N

N−1∑
i=0

v2i = N ||v(x)||22.

The desired result follows by combining this with (4). �

The next result is a refinement of Lemma 1 of [36]. We recall that Lemma 1 of
[36] stated that there exists a Z(x) ∈ Z[x] such that Z(x)v(x) ≡ d mod F (x) and
||Z(x)||∞ ≤ ||v(x)||N−12 ||F (x)||N−12 . (The Z(x) obtained in Lemma 2 below is the
same as the Z(x) in Lemma 1 of [36].)

Lemma 2. There exists a polynomial Z(x) ∈ Z[x] such that Z(x)v(x) ≡ d mod F (x)
and ||Z(x)||∞ ≤ ||v(x)||N−12 .

Proof. As in [36], we apply Cramer’s Rule and Hadamard’s inequality. However,
instead of applying the Hadamard inequality directly, we first do elementary opera-
tions to the Sylvester matrix that do not change its determinant d, and then apply
Hadamard’s inequality.

As in [36], there are polynomials

S(x) =
N−1∑
i=0

six
i, T (x) =

m−1∑
i=0

tix
i ∈ Q[x]

such that
S(x)v(x) + T (x)F (x) = 1.

Let Z(x) = dS(x) =
∑N−1

i=0 zix
i ∈ Z[x]. Then

Z(x)v(x) ≡ d mod F (x).

As in [36] we have the matrix equation

vm 0 · · · 0 1 0 · · · 0
vm−1 vm · · · 0 0 1 · · · 0

...
...

. . .
...

...
. . .

...
v1 v2 · · · 0 0 0 · · · 1
v0 v1 · · · vm 0 0 · · · 0
0 v0 · · · vm−1 1 0 · · · 0
0 0 · · · vm−2 0 1 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · v0 0 0 · · · 1





sN−1
...
...
s0
tm−1

...

...
t0


=



0
...
...
...
...
...
0
1


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where the first matrix is the Sylvester matrix Syl(v, F )T , an (m + N) × (m + N)
matrix whose determinant is the resultant of v and F , which is d.

Suppose 1 ≤ j ≤ N . As the first step in using Cramer’s Rule to compute the j-th
entry sN−j of the vector of unknowns (sN−1, . . . , t0), substitute the right hand vector
of constants (0, . . . , 0, 1)T for the j-th column of the matrix Syl(v, F )T .

Then for i = 1, . . . , N − 1, replace the i-th row of that matrix with that row
minus the (N + i)-th row, so that the upper right (N − 1)× (N − 1) corner is a zero
matrix. Then the determinant of the resulting matrix is the determinant of its upper
left (N − 1) × (N − 1) submatrix, which by Cramer’s Rule is sN−jdet(Syl(v, F )) =
dsN−j = zN−j. Applying Hadamard’s inequality to the columns, and using that the
entries of the columns are the coefficients of v(x), up to sign and permutation, we
have that this determinant has absolute value at most ||v(x)||N−12 , giving the desired
result. �

We now examine the effect on decryption.
As on p. 426 of [36], define

δ∞ = sup{||g(x)h(x) mod F (x)||∞
||g(x)||∞||h(x)||∞

: deg(g), deg(h) ≤ N}.

Lemma 2 of [36] shows that for F (x) = xN + 1 one has δ∞ ≤ N .
Define the decryption radius

rDec =
d

2δ∞||Z(x)||∞
(following Lemma 1 of [28]). As in Lemma 1 of [28] and p. 425 of [36], decryption
can be done if ||a(x)||∞ < rDec. Using the refined bound ||Z(x)||∞ ≤ ||v(x)||N−12 of
Lemma 2 above and using that δ∞ ≤ N , we obtain

rDec ≥
d

2N ||v(x)||N−12

. (5)

If one knew that d were approximately ||v(x)||N2 , rather than just being bounded
above by it as in Lemma 1, then using (5) would give

rDec ≥
d

2N ||v(x)||N−12

≈ ||v(x)||2
2N

≈ 2
√
N−1
√
N

.

However, if the resultant d is unexpectedly small and the coefficients of Z(x) are
sufficiently large, then rDec will be so small that decryption will not be possible. This
is potentially a problem for the encryption scheme, motivating us to restrict the choice
of the polynomial v(x) in order to improve the ability to decrypt.

4.2. Comments on a Gentry and Vercauteren variant of the SV and GH
schemes. To address the problem pointed out in the previous section, rather than
taking v0, . . . , vN−1 to be random t-bit integers as in [36, 16], Vercauteren (in email
discussion with Lenstra) and Gentry (in conversation and email with Silverberg)
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suggested taking v0 to be approximately 2t and taking the remaining vi’s of negligible
size compared to 2t, so that

(v0, . . . , vN−1) ≈ (2t, 0, . . . , 0).

The resulting basis is “mildly orthogonal” (in Gentry’s words). In particular, it is
orthogonal enough to allow decryption.

We next look briefly at the security of this variant. Let

R = Z[θ] ∼= Z[x]/(F (x)),

the ring of integers of the field K. Let

KR = K ⊗Q R = R⊗Z R ∼= CN/2 ∼= RN ,

a Euclidean space, i.e., a finite dimensional vector space over R with a positive definite
symmetric bilinear form.

Let v = v(θ) ≈ v0. Then L = Rv ∼= ZN is a lattice in KR, and

d = det(L) = #(R/Rv) = NormK/Q(v) ≈ |v0|N.

Thus, d1/N is approximately |v0|. Let

α = 1⊗ d1/N ∈ KR.

Then ||α− v|| is small. Recovering v amounts to solving the inhomogeneous approx-
imation problem, with input α, to find the closest lattice vector v to α. However, if
v1, . . . , vN−1 are too small, then the closest lattice vector to α is much closer than the
next closest lattice vector, so the LLL algorithm finds it.

4.3. Gauss’s general measure. The scheme in [36] is analyzed there using the `2-
norm ||g(x)||2. We instead use a norm that has some additional nice mathematical
properties. When F (x) = x2

n
+ 1 the two norms happen to coincide.

For now, take K to be any number field, let N = [K : Q], and let KR denote the
R-algebra K ⊗Q R. Define

q : KR → R≥0 by q(β) =
1

N

∑
σ:KR↪→C

σ(β)σ(β) =
1

N

∑
σ:KR↪→C

|σ(β)|2

where the bar denotes complex conjugation and the sum runs over all R-algebra
homomorphisms from KR into C.

The map q is a positive definite quadratic form on the R-vector space KR, and q is
canonical, independent of a choice of basis. The map q is (a renormalization of) the
“general measure” of Gauss, and is sometimes called the T2-norm. See [26] for some
of its properties, especially in the case where K is a cyclotomic field.

The inner product on KR associated to the quadratic form q is

〈β, β′〉 =
q(β + β′)− q(β)− q(β′))

2
.
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The length of β is √
q(β) =

√
〈β, β〉. (6)

The map q satisfies a Cauchy-Schwarz inequality:

|〈β, β′〉| ≤
√
q(β)

√
q(β′). (7)

When K is a CM or totally real number field, then for all β ∈ K we have

q(β) =
1

N
TrK/Q(ββ̄) ∈ Q.

From now on, suppose that N = 2n, F (x) = xN + 1, θ is a root of F (x), and

K = Q[x]/(F (x)) = Q(θ). Then σ(β) = σ(β) for all β ∈ K (since K is a CM-field),
and it follows that for all β, β′ ∈ K we have

〈β, β′〉 =
1

N
TrK/Q(ββ′) =

1

N

∑
σ:K↪→C

σ(ββ′). (8)

This inner product is Gal(K/Q)-equivariant. Further, if β =
∑N−1

i=0 riθ
i ∈ KR and

β(x) =
∑N−1

i=0 rix
i ∈ R[x]/(F (x)), then q(β) = ||β(x)||22, as shown in the following

lemma. This is one reason that the choice F (x) = x2
n

+ 1 is a good one (note that q
and || · ||22 are not the same in general).

Lemma 3. With K = Q(θ) as above, let S∞ = {infinite primes of K}, so that

R[x]/(F (x)) ∼= KR
∼= CS∞ .

Identify β ∈ KR with β(x) =
∑N−1

i=0 rix
i ∈ R[x]/(F (x)) and with (βi)i∈S∞ ∈ CS∞.

Then

q(β) =
1

N

∑
σ:KR↪→C

|σ(β)|2 =
2

N

∑
i∈S∞

βiβi =
N−1∑
i=0

r2i = ||β(x)||22.

Proof. The second equality holds since each i ∈ S∞ corresponds to two embeddings σ.
The third equality follows from the fact that the orthonormal basis {1, θ, . . . , θN−1}
for KR with respect to the inner product corresponding to q is identified with the
basis {1, x, . . . , xN−1} for R[x]/(F (x)), which is an orthonormal basis with respect to

the inner product 〈
∑N−1

i=0 rix
i,
∑N−1

i=0 six
i〉 =

∑N−1
i=0 risi, and so these inner products

must coincide. �

4.4. A first step. In this section we give a first approximation to our variant of the
SV and GH schemes, which we will revise in Section 4.6. Let

λ = θ + θ−1

and let
K+ = Q(λ) ⊂ K = Q(θ) ∼= Q[x]/(x2

n

+ 1).

Then K+ is the totally real subfield of the CM-field K. Let

R+ = Z[λ],
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the ring of integers of K+. Then R = Z[θ] = R+ + θR+ since θλ = θ2 + 1.
Choose ρ0 and ρ1 in R+ = Z[λ], “at random” in some suitable sense. Let

ρ = ρ0 + θρ1 ∈ R, γ′ = ρ/ρ̄ ∈ K. (9)

Then

γ′γ′ =
ρ

ρ̄
· ρ̄
ρ

= 1.

Using the inner product given in (8), and the fact that γ′γ′ = 1, it is easy to see
that

〈γ′θi, γ′θj〉 =
1

N
TrK/Q(θi−j) =

{
1 if i = j,

0 if i 6= j.

Thus, the set {γ′θi}N−1i=0 is a set of vectors in K that is orthonormal with respect to
the inner product 〈 , 〉.

However, γ′ is not necessarily in R, and the cryptosystems require elements of R.
So let

γ = Mγ′ + 1 ∈ R
where M ∈ Z is chosen so that Mγ′ ∈ R (for example, one could take M = ρρ̄), so
that d = NormK/Q(γ) is odd, and so that R/γR ∼= Z/dZ. Let

L = γR,

the ideal lattice in R generated by γ.
As in Section 3.3, the private key is γ and the public key consists of d and r. Since

{γθi}N−1i=0 is a nearly orthogonal basis for the lattice L, decryption is likely to be
feasible.

4.5. Discussion of security of the first step. To what extent does this additional
mathematical structure weaken the security of the scheme?

Before, the secret key v(x) had N degrees of freedom, corresponding to the N
coefficients of v(x). Now there are N/2 degrees of freedom. This can be seen as
follows. Choose ρ1 suitably random in the degree N/2 number field Q(λ) and let
ρ = 1 + θρ1. Multiplying by an element of Q(λ)× to get something of the form
ρ0 + θρ1 does not change γ′ = ρ/ρ̄.

Further, γγ is a totally positive element of R+, and

d = NormK/Q(γ) =
∏

σ:K+↪→R

σ(γγ) ∈ R>0

where σ runs through the N/2 embeddings of the field K+ in R.
Letting

δ = γ − 1 = Mγ′ ∈ R,
then

δδ = (γ − 1)(γ − 1) = M2 ∈ R+
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(since γ′γ′ = 1) and

NormK/Q(δ) = MN,

an N -th power that is close to the public information d = NormK/Q(γ). Thus d is

approximately MN , so M is approximately N
√
d. Rounding N

√
d to the nearest integer

might yield M , and therefore also δδ. So the public information leaks information
about δδ. Is this dangerous? That’s not clear, so next we will try to do better.

4.6. A proposal for a somewhat homomorphic encryption scheme. To play
it safer, we will take γ = Mγ′ + e, where e ∈ R ∼= Z[x]/(F (x)) is chosen so that
the polynomial has small coefficients picked at random from too large a set to be
guessable. The idea will be to take e small enough so that {γθi}N−1i=0 is still an almost
orthogonal basis for the lattice L (i.e., so that Mγ′ is still the dominant term). The
randomness in the choice of e adds to the security, in comparison to just taking e = 1.
The variant of the SV and GH schemes mentioned in Section 4.2 can be viewed as a
special case of the proposed scheme, but now we choose v(x) from a larger set, giving
potentially greater security. In Section 4.7 we will justify our choice of the set from
which e is taken, and will justify our lower bound on the size of the integer M . We
next give the details.

With γ′ as in (9), take M ∈ Z so that Mγ′ ∈ R and M > 4N . Choose e ∈ R at

random subject to the restriction that
√
q(e) < (

√
1 + 1

2N
− 1)M . Let

γ = Mγ′ + e

and let d = NormK/Q(γ).

Write γ =
∑N−1

i=0 viθ
i with vi ∈ Z, let v(x) =

∑N−1
i=0 vix

i ∈ Z[x], and let V be the
matrix associated to v(x) as in (1) above. Check that d is odd and thatR/γR ∼= Z/dZ.

To check the latter, as in §3 of [16], compute w(x) =
∑N−1

i=0 wix
i ∈ Z[x] such that

w(x)v(x) = d (mod F (x)) and let r = w0/w1 (mod d) (if gcd(w1, d) = 1), where as
usual r ∈ Z is taken in the interval [−d/2, d/2). Check that rN ≡ −1 (mod d). If so,
then (as in §3 of [16]) the Hermite Normal Form B of the matrix V is of the form in
equation (3). If any step above fails, start again with a new e (and possibly M).

The private key is γ ∈ R.
The public key consists of d and r.
To encrypt a message bit b ∈ {0, 1}, choose random integers a0, . . . , aN−1 in the

range [ −M
2
√
N+1

, M
2
√
N+1

] and adjust them so that

#{i : ai is odd} ≡ b (mod 2).

Let a = (a0, . . . , aN−1) ∈ ZN .
As before, let the ciphertext c be the translation of a to the parallelepiped P (B),

i.e.,

c = a− (daB−1cB).
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As before, to decrypt a ciphertext c, let a1 be the translation of the ciphertext c
to the parallelepiped P (V ), i.e.,

a1 = c− (dcV −1cV ) = (a′0, . . . , a
′
N−1).

Let

b = #{i : a′i is odd} (mod 2).

By Corollary 10 below we have a ∈ P (V ), so a = a1 and decryption is successful.

4.7. Justification of parameter choices. In this section we justify the conclusion

that a ∈ P (V ), and we justify our choices M ≥ 4N + 1,
√
q(e) < (

√
1 + 1

2N
− 1)M ,

and |ai| ≤ M
2
√
N+1

.

Definition 4. If A = (aij) is an N ×N matrix with real entries, define

||A|| = max
i,j
|aij|.

Matrix multiplication shows that whenever E and F are N ×N matrices with real
entries, then

||EF || ≤ N ||E|| · ||F ||. (10)

Write IN for the N ×N identity matrix.

Lemma 5. Suppose A is an N ×N matrix with real entries, δ ∈ R, 0 ≤ δ < 1, and

||A− IN || ≤
δ

N
.

Then A is invertible, and

||A−1 − IN || ≤
δ

N(1− δ)
.

Proof. Let D = IN − A. Then ||D|| ≤ δ
N

. By (10) we have ||Di|| ≤ δi

N
. Since δi

N
→ 0

as i→∞, we have

A−1 = IN +D +D2 +D3 + . . .

and

||A−1 − IN || ≤
∑
i≥1

δi

N
=

δ

N(1− δ)
.

�

Proposition 6. Suppose (L, q) is a lattice of rank N , and 〈 , 〉 is the inner product
associated to q, and {b1, . . . bN} is a Z-basis for L. Let C = (〈bi, bj〉)i,j denote the
associated (N ×N) Gram matrix. Suppose that m ∈ R+, that ε ∈ R≥0, that

||C −mIN || ≤ ε,
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and that ε < m/N . Suppose α ∈ L⊗Z R = RL and write α =
∑N

i=1 αibi with αi ∈ R.
Then for i = 1, . . . , N we have

|αi|2 ≤
q(α)

m

(
1 +

ε

m−Nε
)
.

Proof. Let {b†i}Ni=1 denote the dual basis of L⊗ZR to the basis {bi}Ni=1, i.e., 〈b†i , bj〉 = δij
where δij is Kronecker’s delta. Let C† = (〈b†i , b

†
j〉)i,j, an N×N matrix with real entries.

It is an exercise to show that C† = C−1.
Since ||C −mIN || ≤ ε, it follows that ||m−1C − IN || ≤ ε/m. Applying Lemma 5

with A = m−1C and δ = Nε/m gives

||mC† − IN || ≤
ε

m−Nε
.

Thus

||C† − 1

m
IN || ≤

ε

m(m−Nε)
yielding

||C†|| ≤ 1

m

(
1 +

ε

m−Nε
)
. (11)

Further, 〈b†i , α〉 =
∑N

j=1 αj〈b
†
i , bj〉 = αi. Now by the Cauchy-Schwarz inequality (7)

and by (6),

|αi| = |〈b†i , α〉| ≤
√
q(b†i )

√
q(α) =

√
q(α)

√
〈b†i , b

†
i〉.

Using (11) we now have

|αi|2 ≤ q(α)〈b†i , b
†
i〉 ≤ q(α)||C†|| ≤ q(α)

m

(
1 +

ε

m−Nε
)

as desired. �

Lemma 7. As usual, let θ be a root of x2
n

+ 1, let K = Q(θ), and let R = Z[θ].
Suppose that M ∈ Z>0, γ′ ∈ K, and e ∈ R, and suppose that γ′γ′ = 1 and Mγ′ ∈ R.
Let γ = Mγ′ + e ∈ R. Define q and 〈 , 〉 as in Section 4.3 and let δij denote
Kronecker’s delta. For i = 1, . . . , N , let bi = γθi−1. Then for all i and j in {1, . . . , N}
we have

|〈bi, bj〉 −M2δij| ≤ 2M
√
q(e) + q(e).

Proof. Note that 〈θi, θj〉 = δij and 〈γ′θi, γ′θj〉 = δij as before, so q(θi) = 〈θi, θi〉 = 1
and q(γ′θi) = 〈γ′θi, γ′θi〉 = 1. We then have

|〈bi, bj〉 −M2δij| = |〈Mγ′θi−1 + eθi−1,Mγ′θj−1 + eθj−1〉 −M2δij|
= |〈Mγ′θi−1, eθj−1〉+ 〈eθi−1,Mγ′θj−1〉+ 〈eθi−1, eθj−1〉|
≤M |〈γ′θi−1, eθj−1〉|+M |〈eθi−1, γ′θj−1〉|+ |〈eθi−1, eθj−1〉|

≤ 2M
√
q(e) + q(e)
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where the last inequality follows from the Cauchy-Schwarz inequality (7) and the
equalities q(γ′θi) = 1 and q(θi) = 1. �

Theorem 8. Suppose θ, M , γ′, e, γ, and q are as in Lemma 7. Suppose α =∑N−1
i=0 αiγθ

i with αi ∈ R. Suppose 0 < c < 1 and√
q(e) < (

√
1 +

c

N
− 1)M. (12)

Then

|αi|2 <
q(α)

M2
(1 +

2M
√
q(e) + q(e)

M2(1− c)
).

Proof. Let ε = 2M
√
q(e)+q(e). Then (12) holds if and only if ε < cM2/N , as follows:

ε− cM2/N = 2M
√
q(e) + q(e)− cM2/N = (

√
q(e) +M)2 − (1 + c/N)M2.

So ε < cM2/N if and only if (
√
q(e) +M)2 < (1 + c/N)M2. Now take square roots.

By Lemma 7 we can apply Proposition 6 with m = M2, giving

|αi|2 ≤
q(α)

M2
(1 +

ε

M2 −Nε
) <

q(α)

M2
(1 +

ε

M2(1− c)
)

as desired, where the last inequality uses that ε < cM2/N . �

Remark 9. With hypotheses as in Theorem 8, if one takes α so that

q(α) ≤ M2

4[1 + c
N(1−c) ]

and uses that 2M
√
q(e) + q(e) = ε < cM2/N , then Theorem 8 gives that |αi| < 1/2

for all i.

Corollary 10. Suppose θ, M , γ′, e, γ, and q are as in Lemma 7, and suppose that√
q(e) < (

√
1 +

1

2N
− 1)M.

Suppose α =
∑N−1

i=0 aiθ
i =

∑N−1
i=0 αiγθ

i with ai, αi ∈ R. Let A = maxi |ai| ∈ R≥0 and
suppose

A ≤ M

2
√
N + 1

. (13)

Then |αi| < 1/2.

Proof. Take c = 1/2 in Theorem 8, and use Theorem 8 and that 2M
√
q(e) + q(e) =

ε < cM2/N = M2/(2N), to obtain

|αi|2 <
q(α)

M2
(1 +

2ε

M2
) <

q(α)

M2
(1 +

1

N
).

By Lemma 3 and the definition of A we have q(α) ≤ NA2. Now apply (13). �
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Remark 11. Since 1 + 1
2N

is approximately (1 + 1
4N

)2, we have that

(

√
1 +

1

2N
− 1)M ≈ M

4N
.

So the upper bound on
√
q(e) in the above results forces M � N . Taking M >

2N+
√

2N(2N + 1) (or more simply M ≥ 4N+1) ensures that (
√

1 + 1
2N
−1)M > 1.

4.8. Discussion of security. Recall that γ = Mγ′ + e and γ′γ′ = 1. Let L+ =
NormK/K+(L), an ideal in R+. Then L+ is a lattice in the Euclidean space

E+ = R+ ⊗Z R ∼= RN/2,

and
γγ ∈ (γγ)R+ = L+ ∼= ZN/2.

Since K is a CM-field, we have σ(γ′γ′) = 1 for all σ : K ↪→ C, and

d = NormK/Q(γ) =
∏

σ:K↪→C

σ(γ) =
∏

τ :K+↪→R

τ(γγ).

For each real embedding τ : K+ ↪→ R, the size of τ(γγ) is close to d2/N . Let

α+ = 1⊗ d2/N ∈ E+.

Then α+ is close to γγ. With a sufficiently good inhomogeneous approximation
algorithm one could recover γγ from α+. Analyzing known attacks comes down to the
question of how good the LLL algorithm is at solving inhomogeneous approximation
problems. If q( e

M
) were too small, LLL would recover γγ, though it is not clear how

much this would help to recover γ. Even if one learns γγ and δδ (with δ = γ − 1 as
in Section 4.5), if e is unknown one still does not know δ or γ.

Gentry points out in his PhD thesis [13, p. 68] that the NTRU signature attack in
the Gentry-Szydlo paper [20] provides an attack on certain ideal lattices in certain
rings of the form Z[x]/(xN −1) that have an orthonormal basis. More work is needed
to determine whether such an attack can be used to weaken the security of the scheme
presented here.

21

Approved for Public Release; Distribution Unlimited.



5. Conclusions

The mathematical foundations for certain Somewhat Homomorphic Encryption
schemes are studied and developed, and strengths and weaknesses are discovered. In
addition, Lenstra and Silverberg propose lattices with nearly orthogonal bases, for
use in Fully Homomorphic Encryption. These bases, when used as the secret key
in a Fully Homomorphic Encryption scheme, are designed to allow efficient decryp-
tion. Justification is given that this choice provides a better balance of security and
efficiency than related previously proposed lattice-based Fully Homomorphic Encryp-
tion schemes. Further work is needed to quantify the security of Fully Homomorphic
Encryption schemes that are based on lattices that have nearly orthogonal bases.
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6. Recommendations

In order to give convincing evidence that methods for computing on encrypted data
are cryptographically secure, it is important to discover, develop, and understand the
mathematical foundations on which these methods rely. This will enable the con-
struction of more efficient and secure systems, and will give reliable information and
confidence as to which systems are secure. Recent proposals for secure computing on
encrypted data make use of lattices that have some symmetry. Therefore, the primary
recommendation is that the mathematical foundations of lattices with symmetry be
discovered and developed. An additional recommendation is that the security of
homomorphic encryption schemes based on ideal lattices be quantified, in order to
give confidence in the security of such schemes and in order to be able to effectively
compare different schemes.
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[37] D. Stehlé and R. Steinfeld, Faster fully homomorphic encryption, in Advances in Cryptology—
ASIACRYPT 2010, Lect. Notes in Comp. Sci. 6477 (2010), M. Abe (ed.), Springer, 377-394.

[38] V. Vaikuntanathan, Computing Blindfolded: New Developments in Fully Homomorphic Encryp-
tion, in IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS) (2011),
Rafail Ostrovsky (ed.), IEEE, 5–16.

26

Approved for Public Release; Distribution Unlimited.



List of Symbols, Abbreviations, and Acronyms

C the complex numbers

FHE Fully Homomorphic Encryption

Fq the finite field with q elements

GH Gentry-Halevi Somewhat Homomorphic Encryption scheme

LLL Lenstra-Lenstra-Lovász lattice basis reduction algorithm

Q the rational numbers

R the real numbers

SHE Somewhat Homomorphic Encryption

SPIP Small Principal Ideal Problem

SV Smart-Vercauteren Somewhat Homomorphic Encryption scheme

Z the integers
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